Dynamic controllers for column synchronization of rotation matrices: a QR-factorization approach

نویسندگان

  • Johan Thunberg
  • Johan Markdahl
  • Jorge Goncalves
چکیده

In the multi-agent systems setting, this paper addresses continuous-time distributed synchronization of columns of rotation matrices. More precisely, k specific columns shall be synchronized and only the corresponding k columns of the relative rotations between the agents are assumed to be available for the control design. When one specific column is considered, the problem is equivalent to synchronization on the (d− 1)-dimensional unit sphere and when all the columns are considered, the problem is equivalent to synchronization on SO(d). We design dynamic control laws for these synchronization problems. The control laws are based on the introduction of auxiliary variables in combination with a QR-factorization approach. The benefit of this QR-factorization approach is that we can decouple the dynamics for the k columns from the remaining d − k ones. Under the control scheme, the closed loop system achieves almost global convergence to synchronization for quasi-strong interaction graph topologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic properties of the QR factorization of banded Hessenberg-Toeplitz matrices

We consider the Givens QR factorization of banded Hessenberg-Toeplitz matrices of large order and relatively small bandwidth. We investigate the asymptotic behavior of the R factor and the Givens rotation when the order of the matrix goes to infinity, and present some interesting convergence properties. These properties can lead to savings in the computation of the exact QR factorization and gi...

متن کامل

Mathematics and Engineering Analysis Technical Report Boeing Information and Support Services Mea-tr-193-revised Sparse Multifrontal Rank Revealing Qr Factorization Sparse Multifrontal Rank Revealing Qr Factorization

We describe an algorithm to compute a rank revealing sparse QR factorization. We augment a basic sparse multifrontal QR factoriza-tion with an incremental condition estimator to provide an estimate of the least singular value and vector for each successive column of R. We remove a column from R as soon as the condition estimate exceeds a tolerance, using the approximate singular vector to selec...

متن کامل

On Data Layout in the Parallel Block-jacobi Svd Algorithm with Pre–processing

An efficient version of the parallel two-sided block-Jacobi algorithm for the singular value decomposition of an m × n matrix A includes the pre-processing step, which consists of the QR factorization of A with column pivoting followed by the optional LQ factorization of the Rfactor. Then the iterative two-sided block-Jacobi algorithm is applied in parallel to the R-factor (or L-factor). Having...

متن کامل

A randomized algorithm for rank revealing QR factorizations and applications

The basic steps of a RRQR Factorization are: (i) select columns from the input matrix A, (ii) permute them to leading positions to a new matrix Ap, (iii) compute a QR Factorization Ap = QR, (iv) reveal rank(A) from R. Since their introduction [1, 2], algorithmic trends have involved procedures for deterministically selecting columns from A [3, 4, 5]. Motivated by recent results in theoretical c...

متن کامل

Multifrontral multithreaded rank-revealing sparse QR factorization

SuiteSparseQR is a sparse multifrontal QR factorization algorithm. Dense matrix methods within each frontal matrix enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel’s Threading Building Blocks library. Rank-detection is performed within each frontal matrix using Heath’s method, which does not require colu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.03549  شماره 

صفحات  -

تاریخ انتشار 2017